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Abstract. We consider a number of related lattice models of branched polymers in 
dilute solution in which the polymer is modelled as a tree or as an animal. In order 
to model the effect on the thermodynamic properties of changing the temperature, or 
the quality of the solvent, we consider counting cycles in animals and near-neighbour 
contacts in both animals and trees. We show that the free energies of these models 
have common features and derive rigorous upper and lower bounds on the temper- 
ature dependence of the free energies. Finally, we derive series data for several of 
these models and compare our estimates of the limiting free energy with the rigorous 
bounds. 

1. Introduction 

A linear polymer molecule in dilute solution in a good solvent can be modelled as 
a self-avoiding walk on a regular lattice. If near-neighbour interactions are suitably 
weighted the (infinite) walk is thought to  undergo a transition which models the 
internal transition in a polymer brought about by the dominance of attractive forces 
between monomers a t  low temperatures. This transition has been studied theoretically 
for many years (see e.g. Mazur and McCrackin 1968, Finsy e t  a1 1975, Massih and 
Moore 1975, Morita 1976, Moore 1977, Pmt  and Zimm 1979, Ishinabe 1985, Privman 
1986, Chang et  a1 1988, Meirovitch and Lim 1989 and many other papers). 

Randomly branched polymers in dilute solution in a good solvent can be modelled 
as lattice animals (i.e. as connected subgraphs of a lattice). Work by Luberisky and 
Isaacson (1979) suggested that cycles are relatively unimportant (in determining the 
universality class) and lattice trees have also been considered as a useful model of 
branched polymers in dilute solution. 

As the solvent quality decreases, branched polymers are expected to  become more 
compact and a collapse transition, analogous to  that in linear polymers, is expected 
to  occur. Numerical evidence for this transition has been provided by several groups 
(Derrida and Herrmann 1983, Dickman and Shieve 1984,1986, Lam 1987,1988, Chang 
and Shapir 1988). The models studied by these authors are formulated using different 
language but can all be expressed in terms of a cycle fugacity as the driving force 
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5320 N Madras et a1 

for collapse (Gaunt and Flesia 1990). Dhar (1987) proved the existence of a collapse 
transition in a related model for directed animals. 

A model closer t o  that used in studies of the internal transition in linear polymers 
is one in which interactions are introduced between pairs of vertices in the animal (or 
tree) which are neighouring sites of the lattice but which are not joined by an edge of 
the animal. In this paper our aim is t o  discuss a number of related models in which the 
collapse is driven by either a near-neighbour or cycle fugacity. In section 2 we discuss 
a variety of these models and then, in section 3,  we prove some theorems which apply 
to  all of them, showing that there are similarities in the behaviour of the limiting free 
energy as the appropriate fugacity varies. In section 4 we add some rigorous results 
for the compact phases of these models and, in section 5 ,  we compare our results 
with predictions from analysis of exact enumeration data for several models in two 
and three dimensions. Finally in section 6 we discuss some possible extensions and 
limitations of this approach. 

2. Models of collapsing branched polymers 

Two basic types of model can be used for the collapse of branched polymers. In 
the first of these the collapse is driven by a near-neighbour contact fugacity, and 
in the second by a cycle fugacity. However, many variants of these two models are 
possible. To understand this we need some definitions and notation. We consider the 
&dimensional hypercubic lattice, whose vertices are the integer points in R d .  We call 
these vertices lattice sites.  If two lattice sites are unit distance apart they are joined 
by an edge of the lattice. There are two different types of lattice animal. A site animal 
is a connected section graph of the lattice (so that if two vertices of the animal are on 
adjacent lattice sites they must be connected by an edge in the animal). We shall write 
A ,  for the number of site animals with n vertices where two animals are considered 
distinct if they cannot be superimposed by translation. For example, on the square 
lattice A ,  = 1, A ,  = 2,  A ,  = 6,  A ,  = 19, etc. A bond animal is a connected subgraph 
of the lattice (so that two vertices of the animal which are on adjacent lattice sites 
may or may not be connected by an edge in the animal). We write a, for the number 
of distinct bond animals with n vertices where, once again, two animals are considered 
distinct if they cannot be superimposed by translation. On the square lattice a, = A,  
for n 5 3 and a, = 23. 

Either site or bond animals can also be classified by the number of edges (rather 
than vertices) in the animal. We write B, for the number of site animals with n 
edges and b, for the number of bond animals with n edges. On the square lattice 
B, = b ,  = 2,  B, = b ,  = 6,  B, = 18, b, = 22, B, = 56 and b,  = 88. 

Yet another set of models is associated with lattice trees. A site tree is a site 
animal with no cycles and a bond tree is a bond animal with no cycles. We write T, 
and t ,  for the numbers of site trees and bond trees with n vertices. (Since the number 
of edges is just n - 1 there is no need to  consider separately the possibility of counting 
by edge content.) Again, for the square lattice, T, = 2, = A ,  = a, for 11 5 3, T, = 18 
and t ,  = 22. 

Some rigorous results are available about the asymptotic behaviour of the numbers 
an , etc. Using concatenation arguments it is easy to prove the existence of the following 
limits: 
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lim n-l log b, = log Ab 

lim n-l log An = log A, 

lim n-l log B, = log Ab 

lim n-l logt, = log A, 

lim n-'logT, = log& 

n-w 

n-w 

n - t m  

n-w 

n-w 

where A,, etc are called growth constants.  These growth constants are known to be 
finite (Klarner 1967, Soteros and Whittington 1990). 

We now return t o  constructing models for collapse. If two vertices of an animal are 
adjacent on the lattice but are not incident on the same edge in the animal we say that  
these two vertices form a contact,  or that they are non-bonded near-neighbours. For 
site animals and for site trees the number of contacts is zero, so contact models can 
only be constructed for bond animals and for bond trees. We write an(u),  b,(u), tn(u)  
for the number of bond animals with n vertices and U contacts, bond animals with n 
edges and U contacts, and bond trees with n vertices and U contacts. For example, on 
the square lattice a4( 1) = b,(l) = t4 (  1) = 4. The corresponding partition functions 
will be written as 

U 

etc, and the corresponding reduced limiting free energies as 

G(P; a )  = n-w lim n-l log Z,(P; u ) .  (2.8) 

To obtain corresponding expressions for the other models we replace a by b ,  or t .  
If we weight animals (etc) by their cyclomatic index (i.e. the maximum number of 

edges which can be removed without disconnecting the animal) then we are restricted 
to  bond and site animals (since trees have cyclomatic index zero). We write a i ( c ) ,  
b i ( c ) ,  A i ( c ) ,  and B i ( c )  for the number of bond animals with n vertices, bond animals 
with n edges, site animals with n vertices and site animals with n edges, each having 
cyclomatic index c. The superscript o indicates the classification by cycles. The 
corresponding partition functions and limiting free energies will be written as 

and 

G"(P; a )  = lim n-l  log Z;(P; a )  
n-o3 

etc, where a can be replaced by b ,  A or B as appropriate. 

3. Some general theorems 

(2.10) 

The models described in section 2 have many features in common and, in this section, 
we emphasise this by proving some general results which apply to  all of the models. 
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In particular, we prove the existence of a limiting free energy, show that this function 
is convex, monotone and continuous, and derive some bounds on the function. 

We write f,(c) for the number of embeddings of a certain type of graph, where 
n will be the number of vertices or edges in the graph and c will be the number of 
contacts or cycles. Consequently fn(c) is a non-negative integer defined for all n > 0 
and c 2 0. We define 

03 

c=O 

C 

and 

We shall be interested in functions f,, and c,,,(n) satisfying 

limsup n-l log f,, < CO 
n+m 

and 

limsup n-'cmaX(n) < CO. 
n-o3 

(3.5) 

Since we expect to  be able to concatenate embeddings in pairs in such a way that 
contacts or cycles are additive, fn(c) will satisfy 

for all m > 0,  n > 0 and c 2 0. 

of lemmas. 
Given suitable functions satisfying equations (3.1) to  (3 .7)  we now prove a series 

Lemma 3.1. limn+03 n-l log Fn(p) = S(P) exists for -CO 5 p < CO, a.nd F(P)  is 
monotone non-decreasing, convex and continuous for --03 < P < CO. 

Proof. Multiplying (3.7) by e@ and summing over c gives 

Then (3 .5) ,  (3 .6)  and (3 .8)  imply that 1imnMm n-l  log F,,(P) exists and is finite, and 
that 
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for -00 < p < 00. Since Fn(p)  is monotone increasing, it follows that F ( p )  is ’ mono- 
tone non-decreasing. Therefore, to prove that F(P)  is convex (and hence continuous), 
it suffices to  prove that 

and (3.10) follows immediately from 

(3.11) 

on taking logarithms, dividing by n and letting n + 00. 

Lemma 3.2. limn-m cmax(n)/n exists and is equal to 

Proof. From (3.7) 

cmaX(n)/n f M 

so that 

and the lemma follows from (3.6) and (3.13) 

Lemma 3.3. For P > 0 

MP 5 F(P) 5 F(0)  + nrg (3.14) 

and 

lim F(P) /P = M 
8- +35 

(3.15) 

Moreover, there is an asymptotic line L ( P )  = MP+S such that limp-m F(P)-.L(@) = 
0. 

Pro0 f. 

for all B.  so that 

(3.16) 
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For 4 > 0 

so that 

(3.18) 

F(P) 5 F(O) + MP. (3.19) 

(3.15) follows on dividing (3.14) by @ and letting p + m. F ( p )  - M P  is convex 
and bounded between 0 and F(0)  for all p 2 0. Therefore F(P)  - M P  must be non- 
increasing in @, hence tending to  a limit which we denote S .  This implies the existence 
of an asymptotic line. 

Remark. S will be interpreted as the reduced limiting entropy of the compact phase 
(see section 4) .  

Lemma 3.4. If V E > 0 there exists 6 > 0 such that 

6n 

c=o 

then 

lim 3 ( P )  = F(-co). 
l3--63 

Proof. For P < 0 

6n 63 

c = o  

so from (3.20) 

fn(0)  5 Fn(P) 5 f n ( O ) ( l  +On + e p 6 n ~ n ( o ) .  

Taking logarithms, dividing by n and letting n + 03 gives 

(3.20) 

(3.21) 

(3.22) 

(3.23) 

F(-co) I F(P) 5 max[F(-m) + l og ( l+  c),F(O) + P6] .  (3.24) 

Now let P + -03 so that 

F(-co) I l imin fF(P)  I: limsup F(P)  5 F(-m) + log(1 + E )  (3.25) 
@---CO 0---03 

and then let c + O+ which establishes (3.21). 
We have the following corollary to lemma 3.4 

Lemma 3.5. If, for some constants A ,  B 3 0 

(3.26) 
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for all n and c ,  then (3.20) is satisfied and hence (3.21). 

Proof. From (3.26) above and (3.21) of Madras e l  a1 (1988) 

But 

@ / A  
lim ( 

6 - O t  (S/A)6/A(1 - 6/A)1-6/A 

(3.27) 

(3.28) 

so that (3.27) and (3.28) imply (3.20) 

Remark. If f,,(O) is replaced by enF(-m) in (3.20) or in (3.26) then the resulting 
conditions still imply (3.21). 

We now consider the application of lemmas 3.1-3.5 to  the seven models discussed 
in section 2. There are four models in which we weight by cyclomatic index (i.e. bond 
animals counted by vertices (model a " ) ,  bond animals counted by edges (model b o ) ,  
site animals counted by vertices (model A") and site animals counted by edges (model 
BO)), and three models in which we weight by the number of contacts (i.e. bond 
animals counted by vertices (model a ) ,  bond animals counted by edges (model b )  and 
bond trees counted by vertices (model t ) ) .  

Since 

(3.29) 

(3.5) is satisfied for all seven models. Similarly, (3.6) is satisfied (by arguments anal- 
ogous to  lemma 2.1 in Madras et a1 (1988)). In each case the graphs can be con- 
catenated in pairs so that contacts or cycles are additive, so that (3.7) is satisfied. 
(Note that when counting by bonds an extra bond must be added, and so we take 
fn(c) = bn-l(c), etc) Hence, for all seven models, the conditions of lemmas 3.1, 3.2 
and 3.3 are satisfied. To complete the picture (as far as these lemmas are concerned) 
we need to identify F(-ca),  F(0)  and M for the seven models. 

Model U " :  F(0)  = log A, F(-oc,) = log A, M = d - 1  
Model b o :  F(0) = log&, F(-ca) = logA, M = ( d  - l ) / d  
Model A": F(0)  = logAS F ( - m )  = logAo M = d - 1 
Model Bo:  F(0)  = logAb 
Model a :  F(0)  = log A, F ( - W )  = logAS M = d - 1  
Model b:  F(0)  = logx, F(-m) = logrib M = d - 1  
Model t :  F(0)  = log& 

F(-ca) = logA, M = ( d  - l ) / d  

F(-oo) = logAo M = d - 1. 

Lemmas 3.4 and 3.5 are concerned with the limiting behaviour as p + -W. The 
idea is to  devise a construction to  reduce the number of cycles or contacts. For bond 
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animals one can reduce the number of cycles by deleting edges or reduce the number 
of contacts by adding edges. From (2.10) of Madras e t  a1 (1988) it follows that 

(3.30) 

so that model U" satisfies the conditions of lemma 3.5 and hence 

lim G"(P; U )  = log A,. (3.31) 
p--CO 

The corresponding inequality when counting by edges (model b o )  is immediate: 

(3.32) 

so that 

lim Go(/?; b )  = log A,. (3.33) 
4 + - W  

In a similar way we can add edges to bond animals to  reduce the number of 
contacts. For any bond animal with c contacts we can add c additional edges to  
reduce the number of contacts to zero but a bond animal with no contacts can have 
more than one precursor with c contacts. Since the animal (with n vertices) can have 
no more than dn edges we have 

(3.34) 

so that 

lim G(P; U )  = log A,.  (3.35) 
p--CO 

Similarly 

for c 5 ( d  - l ) n ,  so that 

Hence 

(3.36) 

(3.37) 

lim G(P; b )  = log Ab.  (3.38) 
p--m 
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We do not have corresponding constructions for decreasing the number of contacts in 
bond trees or cycles in site animals. 

The inequalities in (3.30), (3.32), (3.34) and (3.37) not only establish the behaviour 
in the ,B + -CO limit but also give rise to  upper bounds on the free energy which are 
useful for P < 0. For instance, from (3.30) we have 

so that  

Similarly we obtain 

Go(@; b )  5 log A, + ( d  - 1) log( 1 + eP) 
G(P; U )  5 log As + d log( 1 + e@) 

(3.41) 
(3.42) 

and 

G(P; b )  5 log Ab + dlog( 1 + AbeP). (3.43) 

For some cases it is possible to obtain improved bounds for ,B > 0 and in the next 
lemma we give an improved result for G"(P; U). 

Lemma 3.6. For all D 

Proof. From lemma 2.3 of Madras e2 a1 (1988) 

To get the lower bound first replace c + k by cma,(n) in (3.45) to give 

(3.44) 

(3.45) 

(3.46) 

and then multiply by e@' and sum over c to give 

The lower bound follows by taking logarithms dividing by n and letting n + m. 
For the upper bound, let un,e , i  be the number of animals (up to  translation) with 

n vertices, e edges and i boundary edges. Note that i E 2dn - 2e - 1 where 1 is the 
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number of contacts in the animal. By arguing as in Kesten (1982, lemma 5.1) for the 
edge-percolation model, we have 

(3.48) 
n = l  e=O i = l  

for any p ,  0 < p < 1. The upper bound follows from this inequality by considering 
animals with c cycles and n vertices. Hence e G c + n - 1 and 2dn - 2e + c - c,,,(n) 5 
i 5 2dn - 2e1 so that 

2dn - 2e 

. i (C )  = c 'n,e,i.  
Z=2dn-2e+c-cm..(n) 

The inequality (3.48) implies 

2dn-2e 

nun,e , ipe( l  - p)2dn-2e I 1. 
i = l  

Combining equation (3.49) and equation (3.50) 

1 
I n p e ( l  - p)2dn-2e 

(3.49) 

(3.50) 

(3.51) 

where e G c + n - 1. Multiplying both sides by ePCl summing over 0 5 c 5 c,,,(n) 
and choosing p such that p = ep(1 - p)2 gives 

(3.52) 

The upper bound for G"(P;a) follows by dividing equation (3.52) by n,  taking loga- 
rithms, substituting p = 1 + (1 - d m ) / 2 e P  and letting n + 00. 

Similarly for Go@; b )  the inequality (3.45) leads to a lower bound and the inequal- 
ity (3.48) leads to an upper bound giving 

Using similar arguments one can derive useful bounds for model A" and for model 
t .  For model A" the result comes from 

(3.54) 

Multiplying by (ep - l) ' ,  summing from c = O,.. . ,cmax(n),  reversing the order of 
summation, taking logarithms, dividing by n and letting n -t 00 gives for P > 0 

G"(P; A )  5 G"(P + log( 1 - e-p);  U )  

(3.55) 
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An alternative upper bound on G"(P; A )  can be derived from the inequality analogous 
to (3.48) for site percolation. Then the appropriate perimeter is the site perimeter 
but this can never be less than the bond perimeter since each perimeter site must 
be connectable to  the cluster by at  least one perimeter bond. Using this one readily 
obtains 

which is an improvement over the upper bound in (3.55) for large p.  For model t the 
result follows from 

(3.57) 

Multiplying by ePk, summing from 6 = 0,  . . . ,cmax(n), taking logarithms, dividing by 
n and letting n + CO 

G(P; t )  < d l o g d - ( d -  l ) log(d-  1)+Go(/3,A).  (3.58) 

4. The compact phase 

In this section we discuss the limiting entropy of the compact phase for these models. 
This is defined as the intercept S of the asymptotic line L ( P )  of the free energy F(P) 
(see lemma 3.3). In some cases we can calculate the value of the intercept directly 
and in others we shall be interested in the value of limsup,,, n-l logf,,(cmaX(n)), 
which is a lower bound for S (see the left inequality in (3.17)). In particular, we are 
interested in whether or not this quantity is zero and, if not, on a lower bound for its 
value. 

For the cycles models we have the following theorem. 

Theorem 4.1 For all four cycles models (a", b",A", and B o ) ,  the limiting entropy S is 
zero. Moreover, for the two bond animal models (a" and b o )  the free energy T(P) is 
never equal to the asymptotic line L ( p )  for any finite p. 

Proof. For models ao and b o ,  both results follow from (3.44) and (3.53) respectively. 
Next, a limiting entropy of zero for a" implies the same for A", because Go(P;a) 2 
G"(P; A )  2 ( d  - 1)p. Similarly, a limiting entropy of zero for bo implies the same for 
BO. 

Theorem 4.1 implies that 

lim n-l log un(cmax ( n ) )  = o 
n-co 

and similar results for b o ,  A",  and B o .  Essentially, this is because the animals with 
the maximum number of cycles are cubes in which every edge is present, and so the 
number of such animals does not grow exponentially. For contact models, however, 
the situat.ion is quite different. 

For the contact model for bond animals, the structure with the maximum number 
of contacts must be a tree (because otherwise we could remove an edge and increase 
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the number of contacts). Moreover, the set of sites of such a maximally compact 
animal must (approximately) fill a cube. In the next theorem, we show tha t  there 
are exponentially many such compact animals; tha t  is, the limiting entropy is strictly 
positive. 

Theorem 4.2. For each of the three contact models (U, b ,  and t ) ,  the limiting entropy 
S is greater than or equal to 4C/x = 1.166..  ., where C is Catalan’s constant. 

Proof. In d dimensions, consider a cube with md vertices and put n = md.  
Then t,(cmax(n)) is the number of spanning trees of this cube, and u,,(cmax(n)) = 
bn-l(cmax(n - 1)) = tn(cmax(n)). Therefore i t  will suffice to  prove tha t  

lini n-l  logtn(cmax(n)) 2 4 ~ / n .  (4.2) 
n=md+m 

We first discuss the proof for d = 2. The m x m square is almost a regular graph 
of degree 4 .  It  can be  made regular by adding a loop to every vertex of degree 3,  and 
two loops to each of the four vertices of degree 2, with the understanding tha t  a loop 
is counted as an incident edge only once. Observe tha t  the addit,ion of loops does not 
change the number of spanning trees. 

The  number of spanning trees of the resulting graph H is 
1 
n .(n) z - U ( 4  - A )  (4.3) 

where the  product is over all of the eigenvalues X of H except the one khat equals 4.  
(See proposition 1.4 and the discussion that follows in CvetkoviC e t  a1 (1979)’) The  
graph H is the sum of two paths with n vertices and with a (singly counted) loop 
a t  each end. These paths have eigenvalues 2cos(ni/m),  i = 0 , 1 , .  . . , m - 1, so the 
eigenvalues of H are given by 

A i j  = 2 cos(ni/m) + 2cos(x j /m)  (4.4) 
where i and j each run from 0 to m - 1. (See CvetkoviC e t  a1 (19791, section 2.5 for 
further details.) This gives 

n-m lim n-l log .(n) = m-oo lim m-’ log(4 - 2 cos(ai/m) - 2 cos(xj/m)) (4.5) 
i ,j 

and, converting sums to integrals, 

The  value of this integral is 4C/n (see for instance Kasteleyn (1961)). By using the 
same argument in d dimensions, (4.6) generalizes to 

This is increasing in d ,  which proves the theorem. 
T h e  following bound is an immediate consequence of (3.58): 

Theorem 4.3. For the tree contact model, the limiting entropy S is a t  most dlog d - 
( d  - 1) log(d - 1).  

So, in particular, for the tree contact model in two dimensions, 1.166..  . 5 S 1. 
1.386. .  . 
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5.  Numerical results 

In this section we report numerical estimates for the /3 dependence of the limiting free 
energy for several of these models. These estimates are based on exact enumeration 
data  derived using a method (Sykes 1986 a, b, c, d ,  Martin 1990) related to  the shadow 
method (Sykes et a1 1965). The number of animals with n vertices, classified by edges 
and contacts, has been derived for n 5 19 on the square lattice and for n 5 17 on the 
simple cubic lattice. These data  are given in appendices A and B. 

For each of the models which we consider we assume that the appropriate partition 
function behaves as 

which is consistent with lemma 3.1. We write rn(p) for the ratio 

and (5.1) then implies that 

so F ( p )  can be estimated by standard ratio techniques (Gaunt and Guttmarin 1974). 
We also construct the generating functions 

and (5.1) then implies that  G ( t )  behaves as 

(5.4) 

(5.5) 

close to  t = The limiting free energy F(P) can then be estimated from 
the location of the appropriate pole in the logarithmic derivative of G(p) by Pad6 
approximant techniques (Gaunt and Guttmann 1974). 

For each of the models which we have studied both of these methods work well for 
p 5 0 and for small positive values of P .  The estimates from the two methods agree 
well with each other but the ratio estimates are usually more precise. For larger values 
of /3 both methods become less useful and eventually fail to provide reliable estimates 
of F(P).  This feature will be discussed in section 6. 

In figures 1-3 we give our estimates of F(P) for models U', bo and U for the square 
lattice. In each case we include the upper and lower bounds derived in sections 3 
and 4 ,  using numerical estimates of the values of F(-oo) and F(0).  For all three 
cases, the approach to  .F(-m) is very rapid as p becomes more negative. Similarly, 
for models u0 and b o ,  the free energy rapidly approaches the asymptote as /3 becomes 
more positive. 

In figures 4 and 5 we give similar estimates of F ( p )  for models uo and bo on the 
simple cubic lattice. The results are very satisfactory for P 5 0 but the estimates 
rapidly become imprecise as p increases. 
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I I I I , 3 0  

2.5  

I 

9 
c 0%- 

U 

2.0 

2 4 

Figure 1. 
model with site counting on the square lattice. 
smaller than the symbols. Upper and lower bounds, and asymptotes, are included. 

Numerical estimates of the reduced limiting free energy for the cycles 
Estimated errom are given unless 

I I I I 1 - 2 6 - -  

- 2 4 - -  

- 6 2 2 - -  
3 
U 

- 2 0 - -  

- 

1 I I I I I 
-4 - 2  0 2 4 6 

P 

Figure 2. As figure 1 but for bond counting. 

6. Discussion 

We have considered a number of closely related lattice models of branched polymers in 
which the collapse of the polymer is driven either by a cycle fugacity or by a fugacity 
associated with near-neighbour contacts in the animal. In section 3 we derived some 
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-5 -3 -1 1 3 
P 

Figure 3. Numerical estimates of the reduced limiting free energy for the contact 
model with site counting on the square lattice. Upper and lower bounds are given as 
continuous curves. 

I 3.5 

c 2 . 5  

-4 -2 
P 

Figure 4. As figure 1 but on the simple cubic lattice. 

general theorems showing that the limiting free energy exists for all of these models, 
and shares some common properties such as convexity and continuity. We have also 
derived some upper and lower bounds on the dependence of the free energy on p and, 
in some cases, these bounds allow us to establish the p + -00 and p -+ 00 behaviour 
in some detail. We have also characterised the limiting entropy of the compact phase 
for some models and derived bounds on its value for others. 
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Figure 5. As figure 2 but on the simple cubic lattice. 

Our analysis of exact enumeration data gives a more detailed picture which is 
consistent with the behaviour predicted above. We mentioned earlier tjhat the series 
analysis methods worked well for i 0 and for small positive values of 0, but progres- 
sively less well as p increased. We believe that clusters of the size which we have been 
able to  generate are not typical of clusters with a large number of cycles or contacts, 
because surface effects are still important a t  these values of n. This will be even more 
serious in three dimensions than in two and we find that the analysis techniques fail 
earlier in higher dimension. 

The free energy F ( p )  is expected to be analytic except for some positive value 
of p corresponding to the collapse transition. We have been unable to establish this 
rigorously and, as expected, the estimated free energy curves derived from the exact 
enumeration data  show no sign of this transition. One expects that  it will be necessary 
to  examine heat capacity data to locate the transition and some preliminary results 
on this have already been published (Gaunt and Flesia 1990). 
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Appendix A.  Exact enumeration data on the square lattice. The number of clusters 
with n vertices, e edges and U contacts is the coefficient of x"beXu. The computation 
relies on combinatorial methods invented by Sykes (19&?6a, b, c ,  d) implemented as 
a general purpose package by Martin (1990). The University of London CRAY was 
used, and the results required a total of about 10 hours of C P U  time. (It should 
be said that a direct count without the benefit of combinatorial support would have 
required some months of C P U  time.) 
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Appendix B. The results for the simple cubic lattice are given below; see appendix 
A for the explanation of the layout. These results required nearly 7 hours of CRAY 
C P U  time. A direct count would have taken a few years to complete. 
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